توابع زیان
دسته‌بندی نشده

توابع زیان برای قطعه‌بندی تصاویر پزشکی: طبقه‌بندی

0

توابع زیان Loss function یکی از مهم‌ترین مؤلفه‌ها در روش‌های قطعه‌بندی تصویر image segmentation مبتنی بر یادگیری عمیق Deep Learning در حوزه پزشکی هستند. طی ۴ سال گذشته، بیش از ۲۰ تابع زیان برای مسائل مختلفی که در حوزه قطعه‌بندی با آن‌ها مواجهیم، ارائه شده است. اغلب آن‌ها را می‌توان در هر نوع مسئله قطعه‌بندی به‌کار گرفت. در این نوشتار قصد داریم:

  • توابع زیان موجود را به روشی اصولی در ۴ دسته مهم تقسیم کنیم. این کار به ما کمک می‌کند تا ارتباطات و شباهت‌های ساختاری میان آن‌ها را کشف کنیم.
  • به علاوه، ما تمام توابع زیان را با پای تورچ اجرا کردیم و کدها و منابع مربوطه را در این لینک به‌طور رایگان در دسترس قرار دادیم.

علاوه بر این، برای سادگی بیشتر مطلب ما از ارائه فرمول‌های ریاضی این توابع زیان خودداری کرده و تنها به بیان مفهوم اصلی هر تابع بسنده کرده‌ایم. اگر می‌خواهید فرمول‌های این توابع را نیز مشاهده نمایید، به این لینک مراجعه کنید.

توابع زیان

توابع زیان توزیع محور Distributation-based loss
  • آنتروپی متقاطع (CE) Cross entropy (CE): این تابع که از معیار واگرایی کولبک-لایبر Kullback-Leibler (KL) divergence metric (KL) مشتق شده معیاری است برای برآورد عدم تشابه دو توزیع. برای مسائل رایج یادگیری ماشینی، توزیع داده‌ها توسط دیتاست آموزشی تعیین می‌شود و بنابراین،  یک مقدار ثابت است.

توابع زیان

بنابراین، حداقل کردن CE معادل است با حداقل‌سازی معیار واگرایی KL:

توابع زیان

  • آنتروپی متقاطع وزنی Weighted cross entropy: این تابع نوع تعمیم‌یافته تابع CE است که در آن به هر کلاس یک وزن اختصاص داده می‌شود. به‌طورکلی، در این تابع وزن بالاتری به کلاس‌های تعریف‌نشده تخصیص داده می‌شود.
  • تابع زیان TopKTopK loss: هدف این تابع این است که شبکه‌ها را وادار نماید تا در حین آموزش روی نمونه‌های دشوارتر متمرکز شوند.
  • تابع زیان کانونی Focal loss: این تابع فرم استاندارد CE را به‌کار می‌گیرد تا بتواند عدم تعادل بین کلاس پس‌زمینه و پیش‌زمینه‌های افراطی را رفع کند؛ این عدم تعادل زمانی پیش می‌آید که تابع زیان اعمال‌شده به نمونه‌هایی که به‌خوبی دسته‌بندی شده‌اند، کاهش ‌یابد.
  • تابع زیان آنتروپی متقاطع جریمه فاصله Distance penalized CE loss: این تابع یک تابع آنتروپی متقاطع وزنی دارای نگاشت فاصله[۵] است که از ماسک‌های واقعی مشتق شده است. هدف این تابع جلب توجه شبکه به نواحی مرزی است که قطعه‌بندی آن‌ها دشوار است.
توابع زیان ناحیه محور Region-based loss

هدف توابع زیان ناحیه محور حداقل‌سازی عدم‌تطابق یا حداکثرسازی نواحی مشترک بین قطعات واقعی و پیش‌بینی‌شده است.

  • تابع زیان مبتنی بر حساسیت-ویژگی (SS) Sensitivity-Specifity (SS) loss: این تابع مجموع میانگین مربعات اختلاف بین حساسیت و ویژگی است. تابع SS برای مقابله با مسائل عدم تعادل، به ویژگی وزن بیشتری اختصاص می‌دهد.
  • تابع زیان Dice Dice loss: این تابع مستقیماً ضریب dice را که رایج‌ترین معیار ارزیابی قطعه‌بندی تصویر است، بهینه‌سازی می‌کند.
  • تابع زیان IoU IoU Loss (یا زیان جاکارد تابع Jaccard Loss): این تابع نیز همچون تابع زیان dice برای بهینه‌سازی مستقیم معیار قطعه‌بندی استفاده می‌شود.
  • تابع زیان Tversky Tversky loss : این تابع برخلاف تابع dice که به نتایج منفی کاذب (FN) و مثبت کاذب (FP) وزن یکسانی اختصاص می‌داد، برای FN و FP وزن‌های متفاوتی درنظر می‌گیرد.
  • تابع زیان Dice تعمیم‌یافته Generalized Dice loss: این تایع یک تابع چندکلاسه تعمیم‌یافته از تابع dice است که در آن وزن هر کلاس معکوس و متناسب با مربع بسامد برچسب آن است.
  • تابع زیان Tversky کانونی Focal Tversky loss: این تابع مفهوم تابع زیان کانونی را به‌کار می‌گیرد تا شبکه را وادار نماید تا بر روی موارد دشوار دارای احتمال کم متمرکز شود.
  • تابع زیان جریمهBoundary-based loss: این تابع در تابع زیان dice تعمیم‌یافته نتایج اشتباه منفی و اشتباه مثبت را جریمه می‌کند.
توابع زیان مرز محور Boundary-based loss

توابع زیان مرز محور یکی از انواع نوظهور توابع زیان هستند که هدف آن‌ها حداقل کردن فاصله میان قطعات واقعی و پیش‌بینی‌شده تصویر است. معمولاً به‌منظور افزایش قدرت فرایند آموزش، از توابع زیان مرز محور و ناحیه محور به‌طور هم‌زمان استفاده می‌کنیم.

  • تابع زیان مرزیBoundary loss: این تابع برای محاسبه فاصله بین دو مرز به روش تفکیک‌پذیر و به منظور تسهیل مسائل قطعه‌بندی نامتعادل به جای انتگرال‌گیری از نواحی، از مرزها انتگرال می‌گیرد.

توابع زیان

در این‌جا  همان بخشی است که پس از قطعه‌بندی (S) با بخش‌های واقعی تصویر (G) تطابق ندارد، نگاشت فاصله از بخش‌های واقعی و توابع شاخص دودویی هستند.سطحی است که بازنمایی مرزها را تعیین می‌کند؛ به این صورت که اگر  باشد، برابر خواهد بود و درغیر این‌صورت خواهیم داشت: . پس از آن مقدار  با خروجی‌های محتمل بیشینه هموار شبکه یعنی  جایگزین می‌شود تا یک تابع قابل آموزش ایجاد شود. گزاره آخر نیز حذف می‌شود، زیرا مستقل از سایر پارامترهای شبکه است. درنهایت، تابع زیان فاصله به شکل زیر خواهد بود:

توابع زیان

  • Hتابع زیان فاصله هاسدروف (HD) Hausdorff distance (HD) loss: هدف این تابع برآورد فاصله هاسدروف در خروجی محتمل شبکه CNN است تا به این ترتیب یاد بگیرد که فاصله هاسدروف را مستقیماً کاهش دهد. فاصله هاسدروف یا HD را می‌توان به کمک پارامتر انتقال فاصله distrance transform در تصویر واقعی و قطعه‌بندی‌شده برآورد کرد.

توابع زیان

در این‌جا و پارامتر انتقال فاصله در تصویر واقعی و قطعه‌بندی‌شده هستند.

توابع زیان ترکیبی Compound loss

با کنار هم گذاشتن چند تابع زیان مختلف می‌توانیم توابع زیان ترکیبی همچون dice-CE ،dice-TopK یا dice-کانونی و از این قبیل را محاسبه کنیم. کد تمامی توابع ذکرشده در این مقاله در سایت گیت‌هاب دردسترس است.

 

 

درخت جستجوی مونت کارلو: پیاده‌سازی الگوریتم‌های یادگیری تقویتی برای بازی‌های زنده

مقاله قبلی

در گروه داده کاوی حراء چه می‌گذرد؟

مقاله بعدی

شما همچنین ممکن است دوست داشته باشید

نظرات

پاسخ دهید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *