Filter by دسته‌ها
chatGTP
ابزارهای هوش مصنوعی
اخبار
گزارش
تیتر یک
چندرسانه ای
آموزش علوم داده
اینفوگرافیک
پادکست
ویدیو
دانش روز
آموزش‌های پایه‌ای هوش مصنوعی
اصول هوش مصنوعی
یادگیری بدون نظارت
یادگیری تقویتی
یادگیری عمیق
یادگیری نیمه نظارتی
آموزش‌های پیشرفته هوش مصنوعی
بینایی ماشین
پردازش زبان طبیعی
پردازش گفتار
چالش‌های عملیاتی
داده کاوی و بیگ دیتا
رایانش ابری و HPC
سیستم‌‌های امبدد
علوم شناختی
دیتاست
رویدادها
جیتکس
کاربردهای هوش مصنوعی
کتابخانه
اشخاص
شرکت‌های هوش مصنوعی
محصولات و مدل‌های هوش مصنوعی
مفاهیم
کسب‌و‌کار
تحلیل بازارهای هوش مصنوعی
کارآفرینی
هوش مصنوعی در ایران
هوش مصنوعی در جهان
مقاله
 جایگاه هوش مصنوعی در بانکداری و تشخیص صحت تراکنش‌های بانکی

جایگاه هوش مصنوعی در بانکداری و تشخیص صحت تراکنش‌های بانکی

زمان مطالعه: 3 دقیقه

جرائم مالی و سایر اشکال سرقت دیجیتال، اکثر بانک‌ها و موسسه‌های اعتباری-مالی را تهدید می‌کنند. نرخ تخلف‌های دیجیتال و سرقت از حساب‌های بانکی در سال 2018 به 8/2 میلیارد دلار رسید. اگرچه بانک‌ها و موسسه‌های مالی توانسته‌‌اند با صرف زمان، هزینه و انرژی جلوی سرقت 3/22 میلیارد دلار از این دارایی‌ها را بگیرند اما با استفاده از هوش مصنوعی در بانکداری و همچنین یادگیری ماشین می‌توانند باز هم نرخ کنترل بهتری داشته باشند.

بنر بورس، بانک و بیمه
مشاوره با شرکت هوش

بیشتر بانک‌ها از گروه‌های کارمندان برای تشخیص تراکنش‌های دستکاری شده یا فریبکارانه استفاده می‌کنند، در واقع تراکنش‌هایی که پتانسیل کلاه‌برداری را دارند. اما این تیم‌ها معمولا با مجموعه‌ای از مشکلات روبه‌رو می‌شوند. برای نمونه 45 درصد از بانک‌ها اعلام کرده‌اند فرایندهای ارزیابی انسانی بیش از حد زمان‌بر است. از سوی دیگر 40 درصد دیگر بر این باورند که معمولا بررسی‌های انسانی تراکنش‌های بانکی باعث می‌شود تا خیلی از تراکنش‌های سالم هم به اشتباه غلط تشخیص داده شوند. گاهی اوقات تا 90 درصد تراکنش‌های بانکی سالم به غلط ناسالم تشخیص داده شده که این موضوع به جایگاه برند بانک‌ها لطمه زده است. به همین دلیل استفاده از هوش مصنوعی در بانکداری اهمیتی ویژه پیدا می‌کند.

هوش مصنوعی در بانکداری

راهکاری وجود دارد که ضمن حفظ ارزش برند بانک‌ها، بهبود بهره‌وری و سرعت در تشخیص تراکنش‌های قلابی را برای آنها به ارمغان می‌آورد. آنچه در ادامه می‌خوانید مرور مزیت‌ها و توجه به چالش‌هایی است که استفاده از الگوریتم‌های یادگیری ماشین و هوش مصنوعی در بانکداری به همراه دارد.

هوش مصنوعی در بانکداری

سیستم‌های تشخیص تخلف در تراکنش‌های بانکی که مبتنی بر هوش مصنوعی هستند، قابلیت‌‌های چشمگیری را در اختیار مدیران بانک‌ها قرار می‌دهند که نیروی انسانی تحلیل‌گر هرگز نمی‌تواند آن‌ها را ارائه دهد. این سیستم‌ها می‌توانند تراکنش‌ها را در یک مقیاس خیلی بزرگ رصد کنند. این دقت به حدی است که هر data point در یک تراکنش می‌تواند با سایر data point ها در کسری از ثانیه تطبیق داده شود. تطابق تراکنش‌ بانکی با تمام تراکنش‌های قبلی بانک با هدف تشخیص الگوهای احتمالی کلاه‌برداری یکی دیگر از فواید استفاده از الگوریتم‌‌های یادگیری ماشین و هوش مصنوعی در بانکداری است. در این بررسی از متغیرهایی استفاده می‌شود که شاید هرگز تحلیل‌گر بانکی به آن‌ها توجه نکند. متغیرهایی مثل تلاش برای لاگین به یک حساب بانکی مشابه با نام کاربری و رمز عبورهای مختلف در یک بازه زمانی چند ماهه و یا تراکنش‌های بزرگ بدون سابقه قبلی.

بانک‌ها عملکرد خوبی در پیاده‌سازی سیستم‌های مبتنی بر هوش مصنوعی داشته‌اند. بیشتر از 217 میلیارد دلار بر روی این سیستم‌ها سرمایه‌گذاری شده است. سرمایه‌گذاری در حوزه هوش مصنوعی باعث توسعه سیستم‌های پیشگیری از تقلب و ارزیابی ریسک شده است. 80 درصد از متخصصان این حوزه معتقدند استفاده از هوش مصنوعی در بانکداری توانسته پرداخت‌های تقلبی را کاهش دهد. همچنین 6/63 از آن‌ها هوش مصنوعی را ابزار مناسبی می‌دانند که می‌تواند قبل از وقوع کلاه‌برداری از آن جلوگیری کند. در حالی‌که استفاده از این سیستم‌های هوشمند در اکثر بانک‌های بزرگ با بیشتر از 100 میلیارد دلار رایج شده اما بر اساس گزارش‌ها فقط کمی بیشتر از 5 درصد از بانک‌ها و موسسه‌های مالی یک سیستم هوش مصنوعی قابلیت استفاده دارند.

یکی از دلایل اصلی این شکاف، قیمت بالای سیستم‌های هوش مصنوعی است. ولی دلایل دیگری هم وجود دارند که باعث شده موسسه‌های مالی و بانک‌ها نتوانند از هوش مصنوعی در بانکداری استفاده کنند. مثلا سیستم‌های تشخیص تقلب در تراکنش‌های بانکی در لحظه کار نمی‌کنند؛ در حالی که 6/45 درصد از متخصصان بانکی این را یک ویژگی ضروری می‌دانند. بر اساس نظر 8/42 درصد از متخصصان نیز عدم شفافیت یکی دیگر از عوامل بازدارنده برای بانک‌ها است. هوش مصنوعی نمی‌تواند به خوبی دلیل لغو یک تراکنش بانکی را توضیح دهد اما عامل انسانی دست‌کم توضیحاتی باورپذیر برای آن ارائه می‌دهد.

یادگیری با نظارت در کنار یادگیری بدون نظارت

بخشی از نواقص سیستم‌های تشخیص تقلب که به دلیل استفاده از هوش مصنوعی در بانکداری به وجود آمده‌اند را می‌توان با استفاده از الگوریتم‌های یادگیری ماشین حل کرد. در این الگوریتم‌ها، سیستم از اشتباهات خودش درس می‌گیرد به جای اینکه دائما پروتکل‌های از پیش تعیین شده را اجرا کند. با یادگیری ماشین، سیستم‌های تشخیص تقلب، تراکنش‌های بانکی گذشته را تحلیل می‌کنند و الگوهای موجود در آن‌ها را بر روی تراکنش‌های آینده اعمال می‌کنند تا جرائم مالی را تشخیص دهند. این سیستم‌ها به مرور زمان باهوش‌تر می‌شوند و مهارت بیشتری در مقابله با تقلب پیدا می‌کنند.

یادگیری ماشین عموما به دو شاخه اصلی تقسیم می‌شود، یادگیری با نظارت و دیگری یادگیری بدون نظارت است. یادگیری ماشین با نظارت نیازمند پارامترهایی از پیش تعیین شده است که سیستم بتواند بر اساس آنها تراکنش‌های بانکی را ارزیابی و تحلیل کند. مثلا پروفایل یک حساب بانکی که قبلا در آن تقلب انجام شده و جستجوی یک پایگاه داده برای مطابقت با این پروفایل نمونه‌ای از سیستم یادگیری با نظارت است. در یادگیری بدون نظارت اما سیستم با اتکا به هوش مصنوعی خودش الگوهای کلاه‌برداری یا تقلب در حساب‌های بانکی را کشف می‌کند. به این ترتیب می‌توان گفت یادگیری بدون نظارت در پایش دیتاست‌های بزرگ عملکرد بهتری دارد و منجر به کشف تکنیک‌های خلاقانه‌ای در تشخیص تراکنش‌های بانکی ناسالم می‌شود که قبلا شناخته نشده بودند.

به کارگیری تکنیک‌های مبتنی بر یادگیری ماشین و هوش مصنوعی در بانکداری با هدف تشخیص تراکنش‌های بانکی ناسالم منجر به کاهش تقلب و تراکنش‌هایی که به ظاهر ناسالم بوده‌اند شده است. بانک‌ها بعد از استفاده از یادگیری ماشین توانسته میزان تشخیص کلاه‌برداری در تراکنش‌های بانکی را تا 50 درصد و همزمان علامت‌گذاری اشتباه بر روی تراکنش‌های سالم را تا 60 درصد کاهش دهند. مسئولان بانک انتظار دارند الگوریتم یادگیری ماشین به مروز زمان عملکردش را بهبود دهد تا میزان اشتباه تشخیص تراکنش معمولی به جای تراکنش مشکوک به 80 درصد کاهش پیدا کند.

جرائم مالی در تراکنش‌های بانکی شاید هیچ وقت متوقف نشوند اما معرفی هوش مصنوعی و تکنیک‌هایی مثل یادگیری ماشین در روش‌های تشخیص تراکنش‌های بانکی مشکوک می‌تواند درصد موفقیت این کلاه‌برداری‌ها را کاهش دهد.

انواع کاربردهای هوش مصنوعی در صنایع مختلف را در هوشیو بخوانید

میانگین امتیاز / 5. تعداد ارا :

مطالب پیشنهادی مرتبط

اشتراک در
اطلاع از
0 نظرات
بازخورد (Feedback) های اینلاین
مشاهده همه دیدگاه ها
[wpforms id="48325"]