تشخیص سکته
آموزش‌های پیشرفته هوش مصنوعیاخبارداده کاوی و بیگ دیتا

هوش مصنوعی می‌تواند سرعت تشخیص سکته را افزایش دهد

    2
    مدت زمان مطالعه: ۲ دقیقه

    پیش از توضیح در این باره که هوش مصنوعی چطور می‌تواند سرعت تشخیص سکته را افزایش دهد، باید کمی درباره اهمیت مواردی خاص بدانید. شناسایی دقیق و به‌موقعِ ضایعه‌های سکته انسدادی حاد (AIS) در تصاویر ام‌آرآی اهمیت خارق‌العاده‌ای برای بیماران دارد و می‌تواند مراحل درمانی قلبی را ارتقاء بخشد.

    تفکیک یا شناسایی ضایعه از جمله فرایندهای روتین به شمار می‌رود که طی آن، رادیولوژیست‌ها بخش‌های غیرعادی در تصاویر مغزی را به صورت کِیفی و دستی برمی‌گزینند. با این حال، شناسایی ضایعه‌های بدن به صورت دستی به زمان زیادی احتیاج دارد و ممکن است تشخیص درستی صورت نگیرد. بر همین اساس، روش‌های کارآمد و مقرون به‌صرفه‌ای برای بررسی ضایعه‌های ناشی از سکته انسدادی حاد معرفی شده است.

    تشخیص سکته

    هوش مصنوعی و تشخیص سکته

    تحقیق حاضر، روشی جدید و کاملاً خودکار برای شناسایی و تفکیک ضایعه‌های ناشی از سکته انسدادی حاد در تصاویر ام‌آرآی عرضه می‌کند و منجر به تشخیص سکته با سرعت بالاتر خواهد شد؛ بنابراین، تصاویر به دست آمده به شکل کارآمدتری در قالب «سکته» و «غیر سکته» دسته‌بندی می‌شوند. این روش شناسایی نابهنجاری که به صورت کاملاً خودکار انجام می‌شود، تصاویر وزنی DWI و تصاویر ضرایب ADC را با تصاویر افراد سالم مقایسه می‌کند.

    آن بخش‌هایی که در DWI و ADC با شدت بیشتری نشان داده شده‌اند، به عنوان ضایعه یا زخم تشخیص داده می‌شوند. روش تفکیک ضایعه در میان حدود ۱۰۰ فرد بررسی شده است. از آنجا که خطرِ شناسایی اشتباه ضایعه‌ها به دلیل آرتیفکت‌ها، نویزها یا کیفیت پایین تصویر وجود دارد، پوشش‌های ضایعه‌ای (Lesion masks) ایجاد شده در این روش از طریق یک ابزار طبقه‌بندی صفر و یک مورد پایش و فیلتر قرار می‌گیرند. بنابراین، مشخص می‌شود که پوشش ضایعه‌ایِ ایجاد شده دربردارنده‌ی AIS واقعی است یا خیر. عملکرد طبقه‌بندی در حدود ۲۰۰ ام‌آرآی ارزیابی شده است.

    نتایج تحقیق که در مجله «روش‌های علوم عصب‌شناختی» منتشر شده است، سازگاری خوبی با ضایعه‌هایی دارد که کارشناسان به صورت دستی کِشیده‌اند. روش نوین از کارایی و سرعت بالایی بهره می‌برد و به حافظه یا قدرت محاسباتی بالایی نیاز ندارد.

    محقق پروژه – ساناز نظری فارسانی – از مرکز Turku PET بیان کرد: «ما معتقدیم که این روش از ظرفیت لازم برای اجرا در بسیاری از مراحل تشخیص ضایعه برخوردار است و می‌تواند در فرایندهای تشخیص بالینی بیمارستان‌ها در دستور کار باشد. این روش به رادیولوژیست‌ها کمک می‌کند تا سرعت تشخیص ضایعه افزایش و سوگیری اپراتور نیز کاهش یابد.»

    جدیدترین اخبار هوش مصنوعی ایران و جهان را با هوشیو دنبال کنید

    این مطلب چه میزان برای شما مفید بوده است؟
    [کل: ۲ میانگین: ۵]

    اپلیکیشن آموزش نماز توسط دو کارآفرین مشهدی ساخته شد

    مقاله قبلی

    بینایی ماشین چیست؟ هرآنچه باید درباره این فناوری بدانید

    مقاله بعدی

    شما همچنین ممکن است دوست داشته باشید

    2 نظرات

    1. یه شاهکار دیگه از هوش مصنوعی تو حوزه پزشکی و بهداشت و درمان

    2. امیدوارم این کاربرد هرچه زودتر در دسترس همه کشورهای دنیا قرار بگیره تا نرخ سکته کاهش داشته باشه

    پاسخ دهید

    نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *