40 گام به سوی آینده‌ای هوشمند - مجموعه وبینارهای رایگان در حوزه هوش مصنوعی
Filter by دسته‌ها
chatGTP
آموزش هوش مصنوعی و انواع آن
آموزش‌های پایه‌ای هوش مصنوعی
اصول هوش مصنوعی
پایتون و ابزارهای یادگیری عمیق
کتابخانه‌ های یادگیری عمیق
یادگیری با نظارت
یادگیری بدون نظارت
یادگیری تقویتی
یادگیری عمیق
یادگیری نیمه نظارتی
آموزش‌های پیشرفته هوش مصنوعی
بینایی ماشین
پردازش زبان طبیعی
پردازش گفتار
چالش‌های عملیاتی
داده کاوی و بیگ دیتا
رایانش ابری و HPC
سیستم‌‌های امبدد
علوم شناختی
دیتاست
اخبار
تیتر یک
رسانه‌ها
آموزش پردازش زبان طبیعی
آموزش علوم داده
اینفوگرافیک
پادکست
ویدیو
رویدادها
کاربردهای هوش مصنوعی
کسب‌و‌کار
تحلیل بازارهای هوش مصنوعی
کارآفرینی
هوش مصنوعی در ایران
هوش مصنوعی در جهان
 هوش مصنوعی و پیش بینی خطر مرگ

هوش مصنوعی و پیش بینی خطر مرگ

هوش مصنوعی روز به روز هوشمندتر و در عین حال عجیب و غریب‌تر می‌‌شود به نحوی که حتی می‌تواند پیش بینی خطر مرگ را انجام دهد. بله، یک الگوریتم جدید یادگیری ماشین (که با کمک اکوکاردیوگرافی قلب آموزش دیده است) می‌تواند با بررسی جواب آزمایشات قلب به درستی بیمارانی را که ممکن است طی یک سال آیند فوت کنند شناسایی کند (حتی اگر این افراد از نظر پزشکان سالم باشند). در آینده‌ای نه چندان دور، الگوریتم‌های هوش مصنوعی به راهکار موثری برای پیش‌بینی زمان مرگ تبدیل خواهند شد.

هنوز نمی‌دانیم این الگوریتم چگونه زمان مرگ را پیش‌بینی می‌کند و سازوکار آن برای ما یک معما است.

پیش بینی خطر مرگ

این الگوریتم، که مصداق مفهوم یادگیری ماشینی یا هوش مصنوعی است، عملکرد بهتری نسبت به سایر پیش‌بینی کننده‌های بالینی از جمله تست تخمین خطر ابتلا به بیماری‌های قلبی عروقی pooled cohort equations و تست نارسایی قلب سیاتل Seattle heart failure score دارد.

تیم پژوهشی در تحقیقات خود برای آموزش مدل یادگیری ماشینی از سخت افزار محاسباتی تخصصی استفاده کردند. آن‌ها مدل را با  812،278 فیلم اکوی قلبِ 34،362 بیماری آموزش دادند که طی ده سال گذشته به مراکز درمانی جیسینگر Geisinger مراجعه کرده بودند. سپس نتایجِ مدل را با پیش‌بینی‌های متخصصین قلب طی چندین بررسی مقایسه کردند. در بررسی‌های پزشکی که بعداً صورت گرفت، مشخص شد که با کمک مدل دقت پیش‌بینی‌ متخصین قلب تا 13%  افزایش می‌یابد. این پژوهش تقریباً 50 میلیون عکس را بررسی کرد و یکی از بزرگ‌ترین دیتاست‌ های تصاویر پزشکی را ایجاد نمود که تا کنون منتشر شده است.

پیش بینی خطر مرگ

این هوش مصنوعی خطر مرگ را به درستی پیش‌بینی کرد. این پیش‌بینی حتی در مورد افرادی که اکوی قلب آنها از نظر متخصصان طبیعی بود نیز درست بود. سه متخصص قلب جداگانه اکوکاردیوگرافی‌های طبیعی را بازبینی کردند و هیچکدام نتوانستند الگوی خطری را که الگوریتم شناسایی کرده بود پیدا کنند.

پیش بینی خطر مرگ

شبکه عصبی که به طور مستقیم سیگنال‌های ECG را تحلیل می‌کرد در پیش بینی خطر مرگ طی یک سال آینده نسبت به دیگر راهکارها برتری داشت. برندون فورنوالت، دبیر «مرکز علوم و نوآوری‌های تصویر‌برداری پزشکی» بیمارستان جنسینگر واقع در دنویل، پنسیلوانیا، این اطلاعات را مهمترین یافته‌های این پژوهش می‌داند و معتقد است با این روش ممکن است تفسیر اکوی قلب در آینده به طور کامل تغییر یابد.

[irp posts=”7772″]

نتایج پژوهش دیگری که توسط همین تیم تحقیقاتی صورت گرفته بود نشان داد که مدل‌های مبتنی بر هوش مصنوعی می‌توانند نتایج اکوی قلب را تجزیه و تحلیل کرده و در گروه جمعیتی میانسال افرادی را شناسایی کند که بیشتر در معرض خطر ابتلا به بی‌نظمی ضربان قلب (یا آریتمی قلب) هستند یا به دلیل ابتلا به بیماری‌های مزمن در معرض خطر مرگ زودرس قرار دارند. این تیم بیش از دو میلیون فیلم ECG را برای آموزش شبکه های عصبی عمیق مورد استفاده قرار داد. این دیتاست متشکل از پرونده‌های پزشکی 3 دهه گذشته در مراکز درمانی جیسینگر در ایالات پنسیلوانیا و نیوجرسی است. پژوهشگران به این نتیجه رسیدند که هوش مصنوعی می‌تواند اکویی را که به پیش‌بینی آریتمی قلب و خطر مرگ کمک می‌کند بررسی کند.

پیش بینی خطر مرگ

طبق گفته‌های سوشراویا راگونات، نویسنده اصلی مقاله، «تلفیق مدل‌های پیش‌بینی با روش‌های متداولِ تحلیل فیلم اکوی قلب کاری ساده است. با این حال اگر بخواهیم بر اساس پیش‌بینی‌های کامپیوتری برنامه‌های مراقبتی مناسبی برای بیماران تدوین کنیم با چالش بزرگ‌تری رو به رو خواهیم بود.

هر دو پژوهش از اولین پژوهش‌هایی هستند که به جای استفاده از هوش مصنوعی برای شناسایی مشکلات فعلی، از آن در تحلیل اکوی قلب و برای پیش‌بینی وقایع آینده استفاده کردند.

پیش بینی خطر مرگ

در حال حاضر صنایع بیشتری تحت تاثیر هوش مصنوعی و هوش ماشینی قرار دارند و بهداشت و درمان نیز از این قاعده مستثنی نیست. در واقع هوش مصنوعی می‌تواند بیشترین تاثیر را بر حوزه بهداشت و درمان بگذارد و آینده این صنعت را دگرگون سازد. با کمک الگوریتم‌های هوشمند پزشکان آینده بیماران و حتی پیش بینی خطر مرگ زودهنگام را به درستی پیش‌بینی خواهند نمود. این اطلاعات ارزشمند هستند و به متخصصان حوزه بهداشت و درمان  کمک خواهند کرد پیش از آنکه دیر شود روش‌های درمانی فردی و کیفیت خدمات بهداشتی را بهبود بخشند.

انواع کاربردهای هوش مصنوعی در صنایع مختلف را در هوشیو بخوانید.

میانگین امتیاز / 5. تعداد ارا :

مطالب پیشنهادی مرتبط

اشتراک در
اطلاع از
0 نظرات
بازخورد (Feedback) های اینلاین
مشاهده همه دیدگاه ها
[wpforms id="48325"]