Filter by دسته‌ها
chatGTP
ابزارهای هوش مصنوعی
اخبار
گزارش
تیتر یک
چندرسانه ای
آموزش علوم داده
اینفوگرافیک
پادکست
ویدیو
دانش روز
آموزش‌های پایه‌ای هوش مصنوعی
اصول هوش مصنوعی
یادگیری بدون نظارت
یادگیری تقویتی
یادگیری عمیق
یادگیری نیمه نظارتی
آموزش‌های پیشرفته هوش مصنوعی
بینایی ماشین
پردازش زبان طبیعی
پردازش گفتار
چالش‌های عملیاتی
داده کاوی و بیگ دیتا
رایانش ابری و HPC
سیستم‌‌های امبدد
علوم شناختی
دیتاست
رویدادها
جیتکس
کاربردهای هوش مصنوعی
کتابخانه
اشخاص
شرکت‌های هوش مصنوعی
محصولات و مدل‌های هوش مصنوعی
مفاهیم
کسب‌و‌کار
تحلیل بازارهای هوش مصنوعی
کارآفرینی
هوش مصنوعی در ایران
هوش مصنوعی در جهان
مقاله
 شکست بازیکنان حرفه‌ای ماژونگ توسط هوش مصنوعی Suphx مایکروسافت

شکست بازیکنان حرفه‌ای ماژونگ توسط هوش مصنوعی Suphx مایکروسافت

زمان مطالعه: 2 دقیقه

هوش مصنوعی Suphx مایکروسافت می‌تواند بازیکنان حرفه‌ا‌ی ماژونگ را پس از 5000 بازی شکست دهد.

به لطف پیشرفت‌های الگوریتمی و قدرت محاسباتی ارزان خصوصا در گجت‌های همراه، هوش مصنوعی اکنون به یک قهرمان شکست‌ناپذیر در بازی‌هایی همچون شطرنج، تخته چینی Go، بازی Montezuma’s Revenge و غیره تبدیل شده است. حال در پی پیروزی‌های مکرر ماشین بر انسان در این بازی‌ها، مایکروسافت از یک سیستم هوش مصنوعی موسوم به Suphx خبر داده که به نظر توانایی شکست قهرمانان بازی ماژونگ را دارد!

“از زمانی که محققان مطالعه هوش مصنوعی را آغاز کردند، تلاش‌های زیادی برای ساخت یک ماشین با توانایی انجام بازی‌های مختلف شده است”. این نقل قول دکتر هسایو ووئن هان، مدیریت واحد تحقیق و توسعه مایکروسافت در آسیا است. به گفته او، ماژونگ یک بازی تخته‌ای سخت نسبت به بازی‌های دیگر است، بنابر این توانایی بازی کردن آن هم یک نوع هنر به شمار می‌آید و هم علم. یک بازیکن حرفه‌ای ماژونگ به ترکیبی از مهارت‌های مشاهده، شهود، راهبرد، محاسبه و شانس تکیه می‌کنند؛ مواردی که هوش مصنوعی درآنها با چالش‌های متعددی رو به رو است.

به گفته دکتر هان و همکاران او، ماژونگ مثل نوعی بازی اطلاعات ناقص است؛ یعنی که درطول بازی، برخی از فاکتورها برای بازیکن همچنان ناشناخته هستند. برای نمونه، بازیکن ماژونگ باید پازل‌های دیده نشده حریف را در نظر گرفته و با توجه به وضعیت موجود، تصمیم‌گیری کنند. برای غلبه بر این مشکل، محققان از هزاران بازیکن Tenhou (یک پلتفرم رقابتی آنلاین ماژونگ با بیش از 300 هزار کاربر) درخواست کردند تا با سیستم هوش مصنوعی Suphx بازی کنند تا این سیستم بتواند به طور خودکار، استراتژی‌های متداول این بازی را یاد بگیرد. بعد از این اقدام، Suphx توانست به سرعت سبک بازی کردن خود را توسعه داده و تعادلی میان حرکات حمله و دفاع ایجاد کند.

پس از انجام 5000 بازی در بازه زمانی چهار ماهه، Suphx به سطح فوق پیشرفته رسیده و اخیراً به نخستین سیستم هوش مصنوعی تبدیل شده که توانسته با رتبه دهم Tenhou به رقابت می‌پردازد؛ کاری که تا به حال فقط 180 انسان موفق به انجام آن شده‌اند. همه اینها خبر از پیروزی سیستم هوش مصنوعی Suphx مایکروسافت می‌دهند، اما بد نیست بدانید که موفقیت ربات‌های هوش مصنوعی به همینجا ختم نمیشود؛ ربات Dota2 متعلق به Open AI موفق به شکست 99.4 درصد از بازیکنان در رقابتهای آزاد شده بود. هوش مصنوعی Alpha Star متعلق به DeepMind نیز پیش از این، بازیکنان حرفهای StarCraft II را از پیش رو برداشته بود و در اوایل ماه جاری، هوش مصنوعی Honor Of Kings متعلق به Tencen تیمی از بازیکنان حرفه‌ا‌ی را شکست داد. درنهایت مرکز تحقیقات هوش مصنوعی فیسبوک و دانشگاه کارنگی ملون در ماه جولای، Pluribus را معرفی کردند، یک سیستم هوش مصنوعی که پوکر بازی می‌کند و ادعای فیس‌بوک، می‌تواند 15 بازیکن برتر پوکر در تگزاس را شکست دهد.

این پیشرفت‌ها لزوما محدود به بهبود طراحی بازی‌ها نمی‌شوند، بلکه در حقیقت به ما یادآوری می‌کنند که شاید پیشرفت این سیستم‌ها روزی منجر به تشخیص بیماری‌ها، پیش‌بینی ساختارهای پروتئینی پیچیده و بررسی سیتی اسکن منجر گردد. دمیس هاسابیس، یکی از بنیان‌گذاران DeepMind متعلق به شرکت Alphabet در مصاحبه‌ای گفت: «دلیل اینکه ما خودمان و همه این بازی‌ها را می‌آزماییم این است که میت‌وان از این روش برای توسعه الگوریتم‌ها استفاده کرد. ما در حال ساخت الگوریتم‌هایی هستیم که در دنیای حقیقی کاربرد داشته و می‌توان از آن‌ها برای حل مسائل چالش‌برانگیز استفاده نمود.» هوش مصنوعی امروزه برای طراحی چنین بازی‌هایی استفاده شده، اما این اتفاق سرآغازی برای پیشرفت‌های هوش مصنوعی در آینده خواهد بود.

میانگین امتیاز / 5. تعداد ارا :

مطالب پیشنهادی مرتبط

اشتراک در
اطلاع از
0 نظرات
بازخورد (Feedback) های اینلاین
مشاهده همه دیدگاه ها
[wpforms id="48325"]